Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1033571.v1

ABSTRACT

Non-pharmaceutical interventions (NPIs) and vaccination are two fundamental approaches to mitigate the coronavirus disease 2019 (Covid-19) pandemic. Vaccination strategies are generally less costly and socially/economically disruptive than NPI strategies, such as business closures, social distancing, and face mask mandates, as evidenced by highly vaccinated countries generally rolling back NPIs. However, the respective real-world impact of an NPI strategy versus vaccination strategy, or the combination of both, on mitigating Covid-19 transmission remains uncertain. To address this, we built a Bayesian inference model to explore the changing effectiveness of NPIs and vaccination based on the assembled large-scale dataset, including epidemiological parameters, variants, vaccines, and control variable. Here we show that NPIs were still considerably complementary or even synergistic to vaccination in the effort to curb the Covid-19 infection before reaching herd immunity. We found that (1) the synergistic effect of NPIs and vaccination was 46.9% (reduction in reproduction number) in September 2021, whereas the effects of NPIs and vaccination alone were 20.7% and 28.8%, respectively; (2) effectiveness of NPIs is less sensitive to emerging COVID-19 variants but decreases with vaccination progress, as NPIs may unnecessarily restrict the vaccinated population. The effectiveness of NPIs alone declined approximately 23% since the introduction of vaccination strategies, where the relaxation of NPIs promoted the decline from May 2021. Our results demonstrate that the decision to relax NPIs should consider the real-world vaccination rate of the relevant population, which is determined by the observed vaccine efficacy in relation to extant and emerging variants.


Subject(s)
COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-405658.v1

ABSTRACT

Background: Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe seasonal subnational mobility in Kenya, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings. Methods: To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates important to predicting human movement patterns, while accounting for spatial and temporal autocorrelations. Results: Mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, respectively, across both years. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly predicted mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. Conclusions: These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates and predictors of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings. 


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.31.21254702

ABSTRACT

Governments worldwide have rapidly deployed non-pharmaceutical interventions (NPIs) to mitigate the COVID-19 pandemic. However, the effect of these individual NPI measures across space and time has yet to be sufficiently assessed, especially with the increase of policy fatigue and the urge for NPI relaxation in the vaccination era. Using the decay ratio in the suppression of COVID-19 infections, we investigated the changing performance of different NPIs across waves from global and regional levels (in 133 countries) to national and subnational (in the United States of America [USA]) scales before the implementation of mass vaccination. The synergistic effectiveness of all NPIs for reducing COVID-19 infections declined along waves, from 95.4% in the first wave to 56.0% in the third wave recently at the global level and similarly from 83.3% to 58.7% at the USA national level, while it had fluctuating performance across waves on regional and subnational scales. Regardless of geographical scale, gathering restrictions and facial coverings played significant roles in epidemic mitigation before the vaccine rollout. Our findings have important implications for continued tailoring and implementation of NPI strategies, together with vaccination, to mitigate future COVID-19 waves, caused by new variants, and other emerging respiratory infectious diseases.


Subject(s)
COVID-19 , Communicable Diseases
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.17.20133843

ABSTRACT

Travel and physical distancing interventions have been implemented across the World to mitigate the COVID-19 pandemic, but studies are needed to quantify the effectiveness of these measures across regions and time. Timely population mobility data were obtained to measure travel and contact reductions in 135 countries or territories. During the 10 weeks of March 22 - May 30, 2020, domestic travel in study regions has dramatically reduced to a median of 59% (interquartile range [IQR] 43% - 73%) of normal levels seen before the outbreak, with international travel down to 26% (IQR 12% - 35%). If these travel and physical distancing interventions had not been deployed across the World, the cumulative number of cases might have shown a 97-fold (IQR 79 - 116) increase, as of May 31, 2020. However, effectiveness differed by the duration and intensity of interventions and relaxation scenarios, with variations in case severity seen across populations, regions, and seasons.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL